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Abstract:

Among existing ocean data assimilation methodolo-
gies, reduced-state Kalman filters are a widely-studied
compromise between resolution, and computational
feasibility. Such reduced-state filters require mapping
operators from the fine grid to the reduced state and
vice-versa; that is, that the state-reduction and interpo-
lation operators be pseudo-inverses of each other.

This poster investigates a variety of approaches to com-
puting the pseudoinverse and also evaluates the map-
ping performance of eleven interpolation kernels.

Introduction:
Goal: to understand and predict the general circulation
of the oceans.
Existing approaches remain a compromise between
resolution, optimality, error specification, and com-
putational feasibility. ~Widely-studied compromise:
reduced-state Kalman filter in which the measurement
update takes place on a reduced state compared to
the full state of the Ocean General Circulation Model
(OGCM).
Main challenge: require mapping operators from the
fine (OGCM) state to the reduced state and vice-versa.
Let x; and x, represent the fine and coarse state vec-
tors. State reduction B* and interpolation B operations
defined such that
x,;:B*xI, x; = Bxc+e, B*B=1 (1)
B* and B are pseudoinverses, a condition which en-
sures that repeated subsampling and interpolation do
not lead to a degradation of the coarse-scale data:

xc = B*Bx, )
Objective: to define fast, storage-efficient methods of
finding B* from B.
Existing mapping and pseudo-inverse schemes often
involve the brute-force computation:

B:B*T(B*B*T)*l’ B*— (BT

B)'B".
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Where the matrices are of size nyg X ne, where ny and
n, are the fine-grid dimension of the ocean model and
the coarse-grid dimension of the reduced state, respec-
tively.
Magnitude of challenge: Suppose we have a global
problem with 1/12°-spacing: ny ~ 107. Suppose the
coarse grid has grid spacing of 2°: n. ~ 10% Then
the mapping and pseudo-inverse operations, stored as
dense matrices, are each 1 TERABYTE in size!

Inversion Criteria:

In addition to a computationally efficient approach to
identifying a pseudoinverse, the interpolation kernel in
B must satisfy at least two other requirements.

First: sensitivity to lateral translations must be min-
imized, to ensure that a slow, advective flow is
not progressively corrupted by repeated mapping-
interpolations:

SBB* ~ BB*S, (4)
where S represents a spatial translation on the fine
scale. This is effectively an antialiasing or bandlimiting
criterion.

Second: insensitivity to noise, that is, we wish to limit
the coarse-scale amplification of fine-scale perturba-
tions. The noise sensitivity is proportional to
[T — @c||zf| _ |B*8||Bc| ®)
18] lwel 18] lae| |
The upper bound for this sensitivity is given by the con-
dition number of B or B*:

Omax(B) * Omax(B*) = cond(B) = cond(B*) > 1

6)

FFT:
Computing the pseudoinverse by brute force requires
enormous storage and computational effort. A simple
intuitive approach is to use the FFT:

@ = F5 [ Wik, ky) F(t 20)], @
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Very efficient and fast, however it makes strict sta-
tionarity and periodicity assumptions, are incompatible
with irregularities (e.g., coastlines).

Subsampling:
Subsampling methods allow a straightforward alterna-
tive to the brute-force approach; define x5 of interme-
diate resolution:
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Key Idea — The pseudoinverse of B7 is very easily
found:
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=BiT + By, (10)
such that a row in By is zero if the corresponding row
of BiT is non-zero. Problem: the subsampling oper-
ator introduces aliasing and leads to substantial shift-
sensitivities.

Implicit Inversion:
Implicit methods avoid explicitly computing B* from
B,ie,

= B*x;= (BTB) 'Bx; = @ 'B"x)) (11)
However even the “small” dense matrix Q! can be

unwieldy, both for storage and inversion complexity,
for global-sized problems.

Iterative Inversion:
Instead, we propose to iteratively solve the linear sys-
tem

Qx; =%, (12
which is vastly simpler because of the sparsity of Q.
We apply the Conjugate Gradient method because of
its efficiency and simplicity.
Following table compares storage and computational
complexity for 100 x 100 coarse-scale and 1000 x 1000
fine-scale problem:

Storage Initialization  Effort Per

B*,Q 1, Q Effort Mapping
Brute, nc- ny pQF a2n§ ne - nlf
1010

Force| 100 GB 10'3
Implicit n2 w® ng + a2nf
Method  1GB 101 108
lterative,  a?n. o’ng/B  o’ng+ia’nc
Method| 1 MB 107 2 x 107

The iterative approach offers tremendous reduction in
storage and computational complexity!

Actual reduction in complexity depends on sparsity of
Q@ and i, the number of conjugate-gradient iterations
required for convergence:

Problem| Q Interpolator Size 7

Size | Density (fine-scale pixels)
235 8 12 17 28
33x33| 009 |46 11 41 174 303 240
29x 29| 012 36 11 43 165 291 245
25% 25 015 |36 11 41 169 283 233
21 x21| 021 36 11 40 158 290 223
17x 17| 0.30 3 6 11 41 155 238 195
13x 13| 045 |3 6 11 38 115 232 168
9x9 0.73 4 6 11 27 117 172 115

We show the average number of conjugate-gradient it-
erations to achieve a root-mean-squared accuracy of
0.5%.

Kernels Tested:
We have evaluated the shift and noise sensitivities for
eleven different interpolation kernels:
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Kernel Assessments:

All tests were carried out in 20 x 20-coarse-scale, 200 x
200-fine-scale domains. The theoretical tests measure
aliasing (4) and condition number (6):
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Theofem:)aﬂ\ Shift Sensitivity
We can validate these tests experimentally. The shift
sensitivity is defined as the root-mean-square ratio

rms {S(B¢;) — BB*|S(B§;)|}

rms {B§;} !

where §; is a coarse unit-vector with pixel ¢ set to one
and the rest to zero.
Noise sensitivity is measured by computing the reac-
tion to noise:

(13)

rms(B*N )
11727
Feu@)
where Ny is an array of unit-variance, independent,
Gaussian random variables.
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(14)

Experimental Noise Sensitivity

10 10°
Experimental Shift Sensitivity
Surprisingly, common kernels such as bilinear, expo-
nential, Gaussian, and sinc functions performed only
moderately well.

Scale Sensitivity:

A summary illustration of the sensitivity of various in-
terpolants to the choice of scale. Generally, a larger
scale leads to smoother interpolants, less aliasing (shift
sensitivity), and larger condition number:
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Kernel Conclusions:

Based on our test results we propose that the Hybrid,
Thin-Plate, or Objective Analysis kernels have supe-
rior properties and should be recommended for map-
ping exercises:

Weight Positivity Properties Comments
Gaussian + + Numeric issues
Nonsep. Exp. + -

Separable Exp. 4F

Bilinear -

Cone-shaped — —

Neg.-lobe -

Nonsep. Sinc —

Sep. Sinc aF Regular Grid
Smooth 4 aF Recommended
Thin-Plate 4 aF Recommended
Optimal Interp. aF aF Recommended

Real Data Example:
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Mapping test for global-scale problem. We have a 71 x
62 coarse grid and a 2160 x 960 fine grid. The centered
locations of the 3551 interpolants are shown as white
dots in the top panel; each interpolant has a footprint of
121 x 81 pixels, or 20 x 13 degrees. The bottom panel
shows the result of fine-coarse-fine mapping.




